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(Abstract R

Testicular Germ Cell Tumors (TGCTs) are rare but the most common solid
cancer in young men, and distinguishing seminomas from Non Seminomatous
Germcell Tumors (NSGCTs) preoperatively is essential because therapies and
Volume 3, Issue 1, January 2026 prognoses diverge. Conventional tools serum markers, scrotal ultrasound,
Received : 02 July 2025 and cross sectional imaging often fail to reliably separate subtypes, leading to
diagnostic orchidectomy. Radiomics extracts high-dimensional quantitative
features from imaging, offering a “digital biopsy” that, when paired with
machine learning algorithms, can differentiate TGCT subtypes more accurately
than standard methods. Early ultrasound and MRI based radiomics studies
show promising results, though reproducibility, standardization, and external
validation remain hurdles. This review outlines the current diagnostic landscape,
introduces the radiomics ML pipeline, and summarizes early evidence, while
highlighting barriers and future directions such as multi institutional
collaboration, multi omics integration, deep learning, explainable Al, and
prospective trials. Radiomics and ML promise a non-invasive shift toward
precision oncology for TGCTs.
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1. Introduction

Testicular Germ Cell Tumors (TGCTSs) represent the most common solid malignancy affecting young adult
men, typically between the ages of 15 and 40 years, despite accounting for only about 1% of all male cancers
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worldwide. Over the past several decades, their incidence has steadily risen, particularly in Western countries,
underscoring the growing clinical relevance of this disease (Batool et al., 2019). From an epidemiological
standpoint, TGCTs are broadly divided into two major histological subtypes: seminomas and Non-
Seminomatous Germ Cell Tumors (NSGCTs) (Katabathina et al., 2021). Seminomas generally exhibit a more
indolent biological course, with high radiosensitivity and a favorable prognosis, whereas NSGCTs are
more heterogeneous, often presenting with aggressive features and requiring multimodal therapy. The
distinction between these two groups is crucial, as it informs therapeutic decision-making, follow-up
strategies, and ultimately, patient outcomes. Pathophysiologically, TGCTs arise from primordial germ cells
or gonocytes that undergo abnormal maturation and malignant transformation (Elendu et al., 2024). This
aberrant development results in distinct tumor phenotypes: seminomas tend to retain features of
undifferentiated germ cells, while NSGCTs encompass multiple subtypes, including embryonal carcinoma,
yolk sac tumor, choriocarcinoma, and teratoma, each with unique biological behaviors. These differences in
origin and differentiation pathways explain the divergent clinical courses and therapeutic responses observed
between seminomas and NSGCTs (Yang et al., 2025). Consequently, accurate preoperative differentiation is
not only academically significant but also directly impacts patient management and prognosis. Current
diagnostic approaches, however, remain limited in their ability to achieve reliable non-invasive subtype
differentiation. Serum tumor markers—alpha-fetoprotein (AFP), beta-human chorionic gonadotropin (-
hCG), and lactate dehydrogenase (LDH)—are routinely employed in clinical practice (Naryzhny and Legina,
2025). While elevated marker levels may suggest NSGCTs, sensitivity and specificity are suboptimal, and a
substantial proportion of patients present with normal marker profiles. High-frequency scrotal
ultrasonography remains the imaging modality of choice for the initial evaluation of testicular masses.
Although capable of detecting lesions with high sensitivity, ultrasound interpretation is largely qualitative,
highly operator-dependent, and limited in distinguishing histological subtypes. Cross-sectional imaging
modalities such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are predominantly
utilized for staging and assessment of metastatic spread rather than histopathological characterization of
primary tumors (Muralietal., 2025). The global epidemiological profile of TGCTs is summarized in Table 1.
As a result, the definitive diagnosis of TGCT subtype still relies on radical inguinal orchidectomy, which,
while curative in many cases, imposes psychological stress, fertility concerns, and delays in tailoring patient-
specific therapeutic strategies.

Table 1: Epidemiology of Testicular Germ Cell Tumors (TGCTS)

Parameter Details Notes
. 1% of male cancers; ~70,000 cases The most common solid malignancy in
Global incidence -
annually worldwide young men

Bimodal distribution is occasionally

Peak age 15-40 years reported

Higher incidence in Northern & Western

Lowver incidence in Asia & Africa
Europe

Geographic variation

Likely due to environmental and genetic

Trends Rising incidence over decades
factors

These diagnostic limitations create an urgent need for novel, non-invasive tools capable of providing more
accurate preoperative insights into TGCT biology. Radiomics, an emerging imaging science, has the potential
to address this gap by converting routine medical images into high-dimensional, quantitative datasets that
capture tumor heterogeneity beyond human visual assessment (Sharafaddiniet al., 2025). Features related to
texture, shape, and intensity can be systematically extracted and analyzed, effectively creating a “digital
biopsy” of the entire tumor volume. When integrated with advanced Machine Learning (ML) algorithms,
radiomics enables the development of predictive models that may outperform conventional radiological
assessments in differentiating between seminomatous and non-seminomatous tumors (Feng et al., 2023). Early
studies have shown promising results, suggesting that these approaches could transform preoperative decision-
making and usher in a new era of precision oncology in testicular cancer. Thus, the exploration of radiomics
and ML represents not merely a technological advancement but a paradigm shift in TGCT management
(Zhangetal., 2025). This review will first outline the limitations of existing diagnostic modalities, then introduce
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the principles of the radiomics pipeline and machine learning integration, and finally discuss current evidence,
challenges, and future directions for the clinical translation of this innovative approach.

2. Current diagnostic landscape

The accurate preoperative characterization of Testicular Germ Cell Tumors (TGCTSs) remains a central challenge
in clinical oncology. While significant advances have been made in the management and survival outcomes of
TGCT patients, existing diagnostic tools often fall short when tasked with reliably distinguishing seminomas
from Non-Seminomatous Germ Cell Tumors (NSGCTs) (Beccari et al., 2023). This limitation has direct
implications for patient care, as treatment strategies, intensity of surveillance, and overall prognoses differ
considerably between the two subtypes (Deng et al., 2025). Below is an overview of the key diagnostic modalities
currently employed in clinical practice.

2.1. Serum tumor markers

Serum tumor markers are widely used in the initial evaluation and management of TGCTs. The three most
clinically relevant markers are alpha-fetoprotein (AFP), beta-human chorionic gonadotropin (3-hCG), and
lactate dehydrogenase (LDH) (Rojas-Cadenacetal., 2025).

= AFP: Elevated in most yolk sac tumors and some mixed NSGCTSs, but never in pure seminomas.

= B-hCG: May be elevated in choriocarcinomaand in a subset of seminomas, though at lower levels compared
to NSGCTs.

= LDH: A nonspecific marker, reflecting tumor burden rather than histology.

While helpful, these markers are limited by poor sensitivity and specificity. Up to 30-40% of patients may
present with normal marker levels, and marker elevation alone is insufficient for definitive subtype
differentiation. Furthermore, serum markers may fluctuate during disease progression or treatment, complicating
interpretation (Figure 1).

Elevation in Yes, except pure M Nonspecific, reflects
: seminomas, lower
Tumor seminomas S, tumor burden

Specificity

Sensitivity

Initial evaluation and Initial evaluation and Initial evaluation and
management management management

Usefulness

Figure 1: Comparison of serum tumor makers in TGCTs

2.2. Ultrasonography

High-frequency scrotal ultrasonography remains the first-line imaging modality for evaluating testicular
masses (Sidhu et al., 2025). Ultrasound offers several advantages: it is widely available, cost-effective, non-
invasive, and highly sensitive in detecting intratesticular lesions. Seminomas typically appear as homogenous,
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hypoechoic masses with well-defined margins, while NSGCTs often present as heterogeneous lesions with
cystic, calcified, or necrotic components (Gillingham and Shanbhogue, 2025). Despite these general patterns,
significant overlap exists between subtypes, limiting diagnostic accuracy (Figure 2). Operator dependence
further complicates interpretation, as subtle imaging distinctions may be subjectively assessed. Although
advanced ultrasound techniques, such as elastography and contrast-enhanced ultrasonography, are being
explored, their role in routine preoperative differentiation remains investigational (Solomon et al., 2025).
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Figure 2: Testicular masses: Ultrasound characteristics

2.3. Cross-sectional imaging

Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are typically reserved for staging purposes
rather than primary tumor characterization. CT is the gold standard for evaluating retroperitoneal lymph
node involvement and metastatic spread. However, it provides little insight into the histological subtype of the
primary tumor (Guptaetal., 2025). MRI, with its superior soft-tissue contrast, has been investigated for better
tumor delineation and detection of local invasion. Certain studies suggest that diffusion-weighted MRI may
aid in differentiating seminomas from NSGCTs by analyzing Apparent Diffusion Coefficient (ADC) values
(Kimetal., 2023), but findings remain inconclusive and require validation in larger cohorts. Overall, while CT
and MRI play an indispensable role in staging and treatment planning (Figure 3), their contribution to
histological differentiation is limited.

2.4. Histopathological confirmation

Given the limitations of markers and imaging, histopathology following radical inguinal orchidectomy remains
the gold standard for definitive diagnosis (Skopelidou et al., 2023). Surgical excision provides tissue for
microscopic evaluation, immunohistochemistry, and genetic studies, thereby ensuring accurate subtype
classification. However, this reliance on surgical intervention comes at a cost. Orchidectomy, though often
curative, carries physical, psychological, and reproductive implications (Boulware et al., 2022). Moreover,
patients must endure uncertainty until postoperative results confirm the diagnosis, potentially delaying the
initiation of optimal therapy (Table 2).
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Figure 3: CT vs MRI in tumor characterization

Table 2: Current diagnostic tools for TGCTs: Strengths and limitations

Modality

Clinical role

Strengths

Limitations

Serum markers
(AFP, B-hCG, LDH)

Initial evaluation

Minimally invasive,
inexpensive

Limited sensitivity/specificity;
not elevated in all cases

Operator-dependent; limited

Ultrasound First-line imaging Accessible, sensitive subtype differentiation
cT Staging/metastasis Widely available, reliable for Limited role in histological
assessment nodal disease classification
Problem-solving, soft- | Excellent soft-tissue contrast; Costly_; limited TGCT
MRI evidence base

tissue characterization

multiparametric imaging

Histopathology
(orchidectomy)

Definitive diagnosis

Gold standard, subtype
classification

Invasive; delays tailored
therapy

2.5. Limitations of current approaches
The current diagnostic landscape for TGCTs highlights several key gaps:

1. Inadequate sensitivity and specificity of tumor markers, leading to false negatives or inconclusive results.
2. Operator dependence in ultrasonography, introducing variability and reducing reliability.

3. Restricted role of CT and MRI, which primarily inform staging but not histological differentiation.

4

. Dependence on invasive surgery for definitive diagnosis, which may delay personalized treatment planning
and impose unnecessary psychological burden.

These limitations underscore the pressing need for advanced, non-invasive diagnostic strategies that can
reliably characterize tumor subtypes preoperatively.
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2.6. Transition to emerging technologies

In this context, radiomics and Machine Learning (ML) offer a promising alternative. By extracting high-
dimensional quantitative features from routine medical imaging and applying predictive algorithms, these
approaches may overcome the subjectivity and limitations of current methods (Mansouri, 2023). Radiomics,
when integrated with ML, holds the potential to provide a “virtual biopsy,” enabling accurate, reproducible,
and non-invasive tumor classification.

3. Radiomics: Concept and workflow

Radiomics is an emerging field in medical imaging that seeks to transform standard radiological data into
mineable, quantitative information (Guiotet al., 2022). By extracting a large number of mathematical features
from medical images—features that are often imperceptible to the human eye—radiomics enables a deeper
analysis of tumor biology and heterogeneity. Unlike conventional imaging interpretation, which relies on
subjective visual assessment, radiomics provides an objective, reproducible, and data-rich “digital biopsy” of
the entire tumor volume (Panayides et al., 2020). This approach is particularly relevant in Testicular Germ Cell
Tumors (TGCTs), where accurate, non-invasive differentiation between seminomas and Non-Seminomatous
Germ Cell Tumors (NSGCTs) remains elusive. The radiomics process can be conceptualized as a multistep
pipeline, typically comprising image acquisition, segmentation, feature extraction, feature selection and
reduction, and model development (Lekkas et al., 2025). Each stage is critical to ensure reproducibility,
robustness, and clinical applicability of the resulting predictive models.

3.1. Image acquisition and preprocessing

The first step in radiomics involves acquiring high-quality medical images, most commonly from CT, MR,
or ultrasound. Consistency at this stage is crucial, as variations in imaging parameters, scanner hardware,
or patient positioning can significantly impact the stability of extracted features. For TGCTSs, scrotal ultrasound
remains the frontline modality, but the growing interest in MRI and multiparametric imaging makes these
platforms promising candidates for radiomic analysis (Lin et al., 2025). Preprocessing techniques are often
employed to standardize images before further analysis. These may include normalization of intensity
values, noise reduction, resampling to uniform voxel sizes, and harmonization across scanners. Such steps
aim to minimize technical variability and highlight biological differences, thereby improving feature
reproducibility.

3.2. Tumor segmentation
Segmentation defines the Region of Interest (ROI) from which radiomic features are extracted. In TGCTs,
segmentation typically involves delineating the primary intratesticular lesion (Hu et al., 2024).

= Manual segmentation, performed by expert radiologists, is considered the gold standard but is time-
consuming and subject to inter-observer variability.

= Semi-automatic and fully automated segmentation methods, often driven by machine learning algorithms,
are being developed to reduce variability and improve efficiency.

= Accurate segmentation is essential because errors in defining tumor boundaries can propagate downstream,
undermining the reliability of extracted features and predictive models.

3.3. Feature extraction
Radiomics features are broadly categorized into four groups:

1. First-order features: Describe the distribution of voxel intensities within the ROI, such as mean, median,
skewness, and kurtosis.

2. Shape features: Quantify tumor geometry, including volume, surface area, sphericity, and compactness.

3. Texture features: Capture spatial relationships among voxel intensities, providing insight into intra-
tumoral heterogeneity. Examples include Gray-Level Co-occurrence Matrix (GLCM), Gray-Level Run-Length
Matrix (GLRLM), and Gray-Level Size Zone Matrix (GLSZM) features (Doniselli et al., 2023).
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4. Higher-order features: Derived through mathematical transformations such as wavelet filtering, Laplacian
of Gaussian, or Fourier transforms, which highlight specific image patterns or frequency domains. By
combining these feature classes, radiomics provides a high-dimensional description of tumors, often
generating hundreds to thousands of variables per case.

3.4. Feature selection and reduction

The abundance of extracted features creates challenges related to redundancy, collinearity, and overfitting.
Feature selection and dimensionality reduction techniques are, therefore, critical.

= Statistical methods, such as correlation analysis, univariate testing, and Principal Component Analysis
(PCA), help eliminate redundant or irrelevant features.

= Regularization techniques, including Least Absolute Shrinkage and Selection Operator (LASSO), are
commonly used to retain only the most predictive variables.

= Cross-validation strategies ensure that the selected features maintain robustness across different datasets.
Effective feature reduction ensures that only the most biologically meaningful and statistically stable
parameters are carried forward for model building (Tukhtaev et al., 2024).

3.5. Model development and validation

The final stage of the radiomics pipeline integrates the selected features into predictive models using statistical
or machine learning algorithms (Sttiber et al., 2023). Commonly employed methods include logistic regression,
Support Vector Machines (SVM), random forests, and, increasingly, deep learning networks. For TGCT
differentiation, these models can be trained to classify tumors into seminomatous or hon-seminomatous
categories based on extracted features (Panayidesetal., 2020). Importantly, rigorous validation is essential to
avoid overfitting and ensure generalizability (Table 3). This typically involves: Internal validation: Techniques
such as k-fold cross-validation within the same dataset. External validation: Testing on independent datasets
from different institutions or imaging platforms, which is considered the gold standard for clinical translation.

Table 3: Radiomics pipeline in TGCTs: Steps, challenges, and solutions

Step Purpose Challenges Solutions/Advances

Scanner variability; protocol Harmonization, IBSI

Im isition I lagnostic scan i ideli
age acquisitio Collect diagnostic scans differences guidelines

Manual variability, time-

Segmentation Define tumor ROI .
consuming

Al-based auto-segmentation

Quantify tumor Standardized extraction

i . ili r
Feature extraction heterogeneity Instability of some features software

LASSO, PCA, cross-

Feature selection | Dimensionality reduction Overfitting risk S
validation

Train predictive
algorithms

Federated learning, multi-

Model building center validation

Data scarcity

3.6. Radiomics as a “digital biopsy”

A defining strength of radiomics lies in its ability to capture spatial and biological heterogeneity across the
entire tumor volume, in contrast to conventional biopsy, which samples only a small portion of tissue. This
concept of a “digital biopsy” is particularly attractive in TGCTSs, where tumor subtypes may coexist within
mixed lesions and heterogeneity often dictates clinical behavior (Tukhtaev et al., 2024). By providing a
comprehensive, non-invasive characterization, radiomics may facilitate earlier, more accurate treatment
decisions without relying solely on invasive procedures.

3.7. Integration with clinical and molecular data
Radiomics does not exist inisolation. Its predictive power can be enhanced by integrating imaging features
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with clinical variables (e.g., age, tumor markers) and molecular or genomic data. This multi-omics approach,
termed radiogenomics, has already shown promise in other cancers such as glioblastoma and lung cancer
(Kumar etal., 2025). In TGCTs, such integration could further refine subtype classification and even predict
treatment response or resistance patterns. Radiomics represents a paradigm shift in oncologic imaging by
transforming standard medical scans into quantitative data capable of revealing underlying tumor biology.
Through a structured pipeline of acquisition, segmentation, feature extraction, and model building, radiomics
offers a reproducible and objective method for tumor characterization (Perniciano et al., 2025). When combined
with machine learning, radiomics has the potential to non-invasively differentiate seminomas from NSGCTs,
offering an attractive complement—or even an alternative—to traditional diagnostic tools.

4. Machine learning in oncologic imaging

Machine Learning (ML), a subset of Artificial Intelligence (Al), refers to computational techniques that allow
systems to learn patterns from data and improve predictions without being explicitly programmed. Inmedical
imaging, ML has emerged as a transformative tool capable of analyzing complex, high-dimensional datasets
such as those generated in radiomics. By identifying subtle imaging features imperceptible to the human eye,
ML can assist in classification, prognosis, and treatment-response prediction across multiple cancer types
(Galicetal., 2023). For Testicular Germ Cell Tumors (TGCTs), ML holds particular promise in addressing the
unmet need for accurate, non-invasive preoperative subtype differentiation.

4.1. Principles of machine learning in imaging

The fundamental premise of ML in imaging lies in its ability to map input data (radiomic features) to an output
(diagnosis or classification). This process involves three key stages:

1. Training: Algorithms learn from labeled datasets, where outcomes (e.g., seminoma vs. NSGCT) are known.

2. Validation: Performance is tested on unseen data within the same cohort to adjust hyperparameters and
prevent overfitting.

3. Testing: Final model evaluation is performed on external datasets to assess generalizability. Robust
performance at each stage is essential for clinical translation, as models must demonstrate consistent
reliability across diverse populations and imaging platforms.

4.2. Categories of machine learning algorithms
ML algorithms commonly applied in oncologic imaging include:

= Supervised learning: Algorithms are trained using labeled data. Examples include:
— Logistic regression: Simple yet effective for binary classification tasks.

— Support Vector Machines (SVM): Useful for handling high-dimensional radiomic datasets with clear
margins of separation (Ghaddar and Naoum-Sawaya, 2018).

— Random forests: Ensemble models that reduce overfitting by combining multiple decision trees.

= Unsupervised learning: Used for clustering unlabeled data to uncover hidden patterns, such as grouping
tumors based on imaging similarity.

= Deep learning: A subset of ML based on artificial neural networks. Convolutional Neural Networks (CNNSs),
in particular, can learn hierarchical image features directly from raw data, bypassing the need for handcrafted
feature extraction. Deep learning has demonstrated state-of-the-art performance in tasks like lesion detection
and classification.

4.3. Applications of ML in oncologic imaging
ML has already shown substantial impact in several cancers, paving the way for applications in TGCTSs:

= Lungcancer: Radiomic signatures combined with ML have been used to distinguish benign from malignant
nodules and to predict EGFR mutation status (Zhang et al., 2021).
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= Glioblastoma: ML-driven radiomics has been applied to predict survival and treatment response,
highlighting the value of imaging biomarkers in heterogeneous tumors.

= Prostate cancer: ML algorithms integrated with multiparametric MRI have improved risk stratification
and tumor grading.

These successes provide a strong foundation for extending ML approaches to testicular cancer, where
imaging heterogeneity between seminomas and NSGCTs may similarly be quantified and exploited for subtype
differentiation.

4.4. Challenges in model development
While promising, ML applications in oncologic imaging face several challenges:

< Small sample sizes: Rare tumors like TGCTs often lack large, publicly available datasets, increasing the
risk of overfitting.

= Feature redundancy: High-dimensional radiomic datasets may contain many correlated features,
complicating model training.

= Data heterogeneity: Variability in imaging protocols, scanner types, and preprocessing methods can reduce
reproducibility.

= Interpretability: Black-box models, particularly deep learning, may lack transparency, making clinical
adoption more difficult.

Addressing these challenges requires robust feature selection, multi-institutional collaborations, and the
development of explainable Al (XAIl) models that clinicians can trust.

4.5. ML in TGCT differentiation

Although research is still in its infancy, early studies suggest that ML models can classify seminomas and
NSGCTs with encouraging accuracy. Radiomic features extracted from ultrasound or MRI images, when
combined with supervised learning algorithms, have demonstrated predictive performance superior to
traditional imaging interpretation. For example, Seminomas tend to exhibit more homogeneous texture features,
whereas NSGCTs display greater heterogeneity, captured effectively by radiomic texture metrics (Ahmed,
2025). Shape and volumetric features may further distinguish subtypes, as NSGCTs are often more irregular
and heterogeneous in morphology. By integrating these features, ML algorithms can provide objective,
reproducible classifications, potentially reducing reliance on invasive histopathology for initial treatment
planning.

4.6. Toward clinical translation
The integration of ML into routine TGCT diagnostics requires:

= Standardized imaging protocols: To ensure reproducibility across institutions.
= External validation: Multi-center studies testing model performance on independent datasets.

= Integration with clinical data: Combining radiomics with serum markers, epidemiological variables, and
genomic information could yield comprehensive decision-support tools (Lei et al., 2023).

= Regulatory approval and clinical workflow adaptation: Ensuring compliance with medical device
regulations and seamless incorporation into radiology practice. Machine learning has emerged as a
cornerstone of modern oncologic imaging, offering the ability to extract clinically meaningful insights from
complex radiomic datasets. For TGCTs, ML-driven models show potential in differentiating seminomas
from NSGCTs, addressing a long-standing diagnostic gap. While challenges remain in data standardization,
validation, and interpretability, the trajectory of ML in oncology suggests that these tools will soon play a
central role in precision diagnostics and personalized treatment strategies.

5. Radiomics and ML in TGCT differentiation
The preoperative distinction between seminomas and Non-Seminomatous Germ Cell Tumors (NSGCTSs) is of
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paramount importance, as treatment regimens, surveillance protocols, and prognoses differ significantly
between these subtypes (Scaliaet al., 2024). Traditional diagnostic modalities, while indispensable, often fall
short in reliably differentiating these histologies before surgery. Radiomics and Machine Learning (ML), by
contrast, provide an innovative, non-invasive strategy that leverages high-dimensional imaging features and
advanced algorithms to improve diagnostic precision. Although research in Testicular Germ Cell Tumors
(TGCTSs) remains nascent compared to other malignancies, early studies and translational insights highlight
their promising potential.

5.1. Rationale for radiomics in TGCTs

Seminomas and NSGCTs exhibit distinct biological and morphological characteristics that may not be visually
discernible but are encoded in imaging data. Seminomas typically present as homogeneous, well-defined
masses, while NSGCTs are often heterogeneous with necrotic, cystic, or calcified components (Hashemietal.,
2024). These subtle differences can be captured through radiomic texture, shape, and intensity features. When
integrated into ML algorithms, these features can generate predictive models capable of distinguishing
histological subtypes preoperatively with greater accuracy than conventional radiology alone.

5.2. Early evidence from ultrasound-based radiomics

Ultrasound (US) is the first-line imaging modality for evaluating testicular masses, making it a logical platform
for radiomic analysis. Several exploratory studies have investigated whether radiomic features extracted from
scrotal US can aid in TGCT differentiation (Batool etal., 2019).

= Texture analysis: Seminomas often demonstrate lower entropy and higher uniformity on Gray-Level Co-
occurrence Matrix (GLCM) metrics compared to NSGCTs, reflecting their relative homogeneity.

= Shape features: NSGCTs tend to be more irregular, a trait quantifiable through parameters like compactness
and sphericity.

= Preliminary ML models: Trained on these features (e.g., support vector machines and random forests)
have reported classification accuracies ranging from 70-85%, suggesting a clear improvement over subjective
human interpretation. These findings highlight the potential of radiomics-enhanced US to act as a decision-
support tool, though broader validation remains necessary.

5.3. MRI and multiparametric imaging studies

MRI, with its superior soft-tissue contrast and functional imaging capabilities, offers another promising platform
for TGCT radiomics. Diffusion-Weighted Imaging (DWI) and Apparent Diffusion Coefficient (ADC) maps, in
particular, have been explored for their ability to capture microstructural differences between seminomas and
NSGCTs (Felicianietal., 2021).

< Radiomic ADC features: Seminomas often exhibit more uniform diffusion characteristics, while NSGCTs
display greater heterogeneity in ADC values.

= ML integration: Models incorporating ADC radiomics have achieved predictive accuracies upwards of
80% in small pilot studies.

= Multiparametric MRI: Combining T2-weighted, DWI, and contrast-enhanced sequences has further enriched
radiomic datasets, allowing ML models to integrate complementary biological signals. Although sample
sizes remain limited, these studies underscore the potential of MRI-based radiomics as a robust platform
for non-invasive TGCT characterization.

5.4. CT and cross-sectional imaging applications

CT remains the gold standard for staging TGCTSs, but its role in primary tumor characterization has been
underexplored. Radiomic analysis of CT images could theoretically capture differences in tumor density,
texture, and morphology (Laino, 2025). While direct evidence in TGCTs is sparse, lessons from other cancers
(e.g., lung and renal tumors) suggest CT radiomics may eventually contribute to subtype classification, especially
when combined with ML approaches.
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5.5. Comparative performance against conventional methods

Early radiomics-ML models have shown performance metrics that rival—and in some cases exceed—traditional
diagnostic tools. For instance:

= Tumor markers (AFP, B-hCG, LDH) have limited discriminatory power, especially in marker-negative
cases.

= Conventional US interpretation is subjective and operator-dependent.

= Radiomics-ML models, however, provide objective, reproducible classification with higher diagnostic
accuracy, often in the 75-85% range in initial studies (Wu et al., 2025). This suggests that radiomics may
serve as a valuable adjunct to existing diagnostic pathways, potentially reducing reliance on invasive
procedures.

5.6. Limitations of current evidence
Despite encouraging results, several limitations must be acknowledged:

1. Small, single-center studies dominate the field, limiting generalizability.

2. Heterogeneity in imaging protocols (e.g., different scanners, acquisition settings) introduces variability in
feature reproducibility.

3. Lackofexternal validation: Most studies rely on internal cross-validation rather than independent datasets.

4. Limited integration with clinical data: Few models incorporate tumor markers, patient demographics, or
genetic information alongside radiomics (Anagnostopoulos etal., 2022). These gaps underscore the need
for large, multi-institutional efforts to establish standardized workflows and externally validated models.

5.7. Future directions in TGCT radiomics

To realize clinical utility, radiomics and ML approaches in TGCT differentiation must evolve beyond proof-of-
concept studies. Future efforts should focus on:

= Multi-omics integration: Combining radiomics with genomics, proteomics, and serum biomarkers for
comprehensive tumor characterization.

= Prospective trials: Incorporating radiomics into clinical workflows to assess real-world performance.

= Automated segmentation: Leveraging deep learning to standardize tumor delineation and reduce observer
variability.

= Federated learning: Collaborative Al frameworks enabling multi-center model training without sharing
raw patient data, thus overcoming privacy and data scarcity challenges. Radiomics and ML have shown
early promise in differentiating seminomas from NSGCTs using ultrasound and MRI platforms. By
guantifying subtle imaging features that escape conventional radiology, these approaches provide objective,
reproducible classification with accuracies surpassing traditional methods.

= Although current evidence is limited by small sample sizes, heterogeneity in methods, and lack of validation,
the trajectory of research strongly suggests that radiomics-ML integration could transform preoperative
TGCT diagnostics.

= With continued development, these tools may enable clinicians to make faster, more precise, and less
invasive treatment decisions, heralding a new era of personalized oncology for testicular cancer patients.

6. Challenges in clinical translation

Radiomics and Machine Learning (ML) hold substantial promise for transforming the preoperative
differentiation of Testicular Germ Cell Tumors (TGCTs). However, despite encouraging preliminary findings,
significant barriers remain before these approaches can be reliably integrated into routine clinical practice
(\Vollmeretal., 2018). Translating radiomics from research settings to patient care requires addressing challenges
related to reproducibility, standardization, validation, clinical integration, and ethical considerations.
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6.1. Reproducibility and feature robustness

One of the most pressing challenges in radiomics is the reproducibility of extracted features. Radiomic
parameters can be influenced by several technical factors, including image acquisition protocols, scanner
hardware, reconstruction algorithms, and preprocessing techniques (Chaddad and Liang, 2024). For example,
the same testicular lesion imaged on two different ultrasound machines or MRI scanners may yield different
feature values, reducing reliability. To address this, harmonization strategies—such as image normalization,
resampling, and feature standardization—are essential. The Image Biomarker Standardization Initiative (IBSI)
has proposed guidelines to improve reproducibility, but adherence remains inconsistent across studies. Without
robust and reproducible features, predictive models cannot achieve the consistency required for clinical
translation.

6.2. Data scarcity and limited cohorts

Unlike lung, prostate, or brain cancers, TGCTs are relatively rare, which restricts the availability of large,
annotated imaging datasets. Most published studies to date are single-center with small cohorts, often fewer
than 100 patients (Casiraghiet al., 2011). Such small datasets increase the risk of overfitting—where models
performwell on training data but fail to generalize to external populations. Collaborative, multi-institutional
studies are needed to overcome this barrier. The development of federated learning approaches (Darzidehkalani
etal., 2022), where models are trained across multiple centers without requiring direct data sharing, may offer
a solution to data scarcity while maintaining patient privacy.

6.3. Standardization of imaging protocols

Variability in imaging protocols represents another obstacle. For example, differences in ultrasound transducer
frequency, MRI sequence parameters, or CT reconstruction techniques can introduce systematic biases in
radiomic features. Without standardized acquisition protocols, results may not be comparable across
institutions. Standardization efforts must extend to segmentation methods as well (Libling et al., 2023). Manual
segmentation is still widely used in TGCT radiomics, but it is labor-intensive and subject to inter-observer
variability. Automated or semi-automated segmentation using deep learning offers a path forward, though
these tools require validation and regulatory approval before routine deployment.

6.4. Validation and generalizability

Most radiomics-ML models for TGCT differentiation have relied on internal validation techniques, such as
cross-validation or bootstrapping, within a single dataset. While these methods help prevent overfitting, they
do not guarantee external validity. External validation on independent datasets, ideally from multiple
institutions with heterogeneous patient populations and imaging protocols, is essential to demonstrate
generalizability. Without external validation, even the most promising models risk failing when applied in
real-world clinical scenarios (van der et al., 2019). This limitation has historically slowed the adoption of Al in
oncology and remains acritical barrier for TGCT applications.

6.5. Integration with clinical workflows

For radiomics and ML to be clinically impactful, they must integrate seamlessly into existing diagnostic
pathways. Radiologists and oncologists require tools that are user-friendly, time-efficient, and compatible
with hospital information systems. Models that demand complex preprocessing, extensive computational
resources, or manual feature selection may struggle to gain traction in busy clinical settings (Khan et al., 2020).
Moreover, radiomics outputs must provide actionable insights. For instance, a probability score distinguishing
seminoma from NSGCT must translate into clear clinical recommendations. Integration with other diagnostic
data, such as serum tumor markers and patient demographics, could improve usability and adoption.

6.6. Interpretability and trust

Many ML models, particularly deep learning algorithms, function as “black boxes,” producing predictions
without clear explanations. This lack of transparency poses a challenge for clinicians, who are unlikely to
adopt tools they cannot interpret or trust. Explainable Al (XAl) approaches, such as feature importance ranking,
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saliency maps, or decision trees, can enhance interpretability by clarifying why a model reached a particular
decision (Vilone and Longo, 2021). Trust also extends to regulatory and medicolegal domains. Clinicians
must be confident that Al-driven tools meet rigorous safety, ethical, and accountability standards before
incorporating them into patient care.

6.7. Ethical and regulatory considerations

Al applications in healthcare raise ethical concerns regarding data privacy, informed consent, and algorithmic
bias. For rare cancers like TGCTs, small datasets may inadvertently reflect population biases, leading to
models that underperform in underrepresented groups. Additionally, regulatory pathways for Al-based
diagnostic tools are still evolving. Agencies such as the FDA and EMA require rigorous validation, quality
assurance, and post-market surveillance before approval. Ensuring patient privacy is another concern,
particularly as multi-institutional collaborations and federated learning approaches expand. Robust frameworks
for data governance and ethical oversight will be necessary for clinical implementation (Moses, 2019). The
translation of radiomics and ML into clinical practice for TGCT differentiation faces significant challenges.
These include technical issues such as reproducibility and standardization, methodological limitations such
as small sample sizes and lack of external validation, and broader concerns related to workflow integration,
interpretability, and ethics. Overcoming these barriers will require multi-institutional collaboration,
standardized imaging protocols, the development of explainable Al models, and robust regulatory frameworks.
While obstacles remain, addressing these challenges is essential to unlock the full potential of radiomics and
ML as reliable, non-invasive diagnostic tools for TGCTs (Hussain etal., 2024).

7. Future Directions

Radiomics and Machine Learning (ML) are still in the early stages of application to Testicular Germ Cell
Tumors (TGCTSs), yet their trajectory mirrors the rapid progress seen in other malignancies such as lung, brain,
and prostate cancers. To unlock their full clinical potential, future research and development must focus on
expanding datasets, integrating multi-modal information, standardizing workflows, and moving toward
clinical adoption through prospective trials and regulatory approval. The following directions are likely to
shape the next phase of innovation in this field.

7.1. Multi-institutional collaboration and data sharing

The rarity of TGCTs poses a significant barrier to building large, diverse datasets necessary for robust model
development. Future progress depends on multi-institutional collaborations that pool imaging, clinical, and
molecular data across geographic regions. Initiatives such as international testicular cancer consortia could
help establish centralized radiomics repositories. To overcome data privacy concerns, federated learning
frameworksmay play an important role. In federated learning, algorithms are trained collaboratively across
institutions without requiring raw data to be exchanged (Myakala et al., 2024). This approach preserves
patient confidentiality while ensuring that models learn from diverse populations, thereby improving
generalizability.

7.2. Standardization of imaging and radiomics workflows

For radiomics to gain clinical acceptance, standardization of imaging acquisition, preprocessing, and feature
extraction is critical. Future work should focus on:

= Protocol harmonization: Establishing consensus on optimal ultrasound, MRI, and CT acquisition
parameters for TGCT imaging (Woznicki et al., 2023).

= Automated segmentation tools: Leveraging deep learning to standardize tumor delineation, reduce inter-
observer variability, and improve reproducibility.

= Feature standardization: Adhering to guidelines from the Image Biomarker Standardization Initiative
(I1BSI) to ensure consistent feature definitions and calculation methods. Such efforts will facilitate
reproducibility across studies and accelerate the integration of radiomics into multicenter clinical
trials.
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7.3. Integration of radiomics with multi-omics data

The future of TGCT diagnostics will likely involve integrated models that combine radiomics with genomics,
transcriptomics, proteomics, and clinical biomarkers. This “multi-omics” strategy could yield more
comprehensive models of tumor biology. For example:

= Radiogenomics could reveal associations between radiomic features and genetic alterations, offering insights
into tumor aggressiveness and therapeutic vulnerabilities.

= Integration with serum tumor markers (AFP, B-hCG, LDH) may improve diagnostic accuracy, especially in
marker-negative patients (llicusetal., 2021).

= Clinical variables such as age, fertility status, and comorbidities can be incorporated to personalize
predictions further. By unifying imaging and molecular data, future predictive models could evolve from
simple subtype classification to guiding individualized treatment planning and predicting therapeutic
response.

7.4. Deep learning and end-to-end models

While most current TGCT radiomics studies rely on handcrafted features, the future may see broader adoption
of deep learning approaches, particularly Convolutional Neural Networks (CNNs). These models can learn
hierarchical imaging representations directly from raw data, potentially bypassing traditional feature extraction
and selection steps (Deng, 2012). End-to-end deep learning models could automatically segment tumors,
extract relevant features, and provide subtype predictions in a single pipeline. Although challenges remain
regarding interpretability and data requirements, advances in explainable Al (XAl) and transfer learning may
enhance their clinical applicability.

7.5. Prospective clinical trials and real-world validation

Tomove beyond proof-of-concept, future studies must be prospective and multicenter, assessing the performance
of radiomics-ML models in real-world clinical workflows (Xie and Chen, 2025). These trials should evaluate
not only diagnostic accuracy but also impact on clinical decision-making, treatment planning, and patient
outcomes. Potential endpoints could include:

= Reduction in unnecessary orchidectomies.
= Shorter time to treatment initiation.
= Improved risk stratification and surveillance strategies.

= Cost-effectiveness of integrating radiomics into diagnostic pathways. Demonstrating tangible clinical
benefits will be key to securing regulatory approval and adoption.

7.6. Clinical decision-support systems

The ultimate goal is the development of user-friendly decision-support tools that integrate seamlessly into
radiology and oncology workflows. Such systems could provide probability scores or risk stratifications
directly within Picture Archiving and Communication Systems (PACS) or electronic health records. For
clinicians, this would mean actionable, interpretable outputs rather than raw data or complex feature sets.
User interfaces should emphasize explainability, enabling radiologists and oncologists to understand why a
model produced a particular prediction (Prince, 2025). This transparency will be essential to building trust
and encouraging adoption.

7.7. Ethical, regulatory, and educational considerations

As radiomics and ML evolve, attention must also be given to ethical and regulatory frameworks. Future
directions should include:

= Bias mitigation: Ensuring that models perform equitably across diverse populations.

= Data privacy safeguards: Expanding the use of anonymization techniques and federated learning.
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= Regulatory approval pathways: Establishing clear standards for Al-based diagnostic tools through bodies
such asthe FDA and EMA.

= Clinician education: Training radiologists, oncologists, and pathologists in Al literacy to ensure informed
use of these technologies.

These measures will help ensure that the deployment of Al in TGCTs aligns with patient safety, ethical
standards, and professional practice. The future of radiomics and ML in TGCT differentiation lies in
collaboration, standardization, and integration. Large, diverse datasets enabled by multi-institutional
cooperation and federated learning will improve model robustness (Yang et al., 2022). Advances in deep
learning, multi-omics integration, and prospective validation will enhance diagnostic precision and clinical
impact. Finally, regulatory frameworks, explainable Al, and clinician engagement will ensure safe and effective
translation into practice (Waqas, 2024). By pursuing these directions, radiomics and ML could transform
TGCT management, enabling non-invasive, personalized diagnostics that reduce reliance on invasive
procedures and accelerate tailored treatment strategies.

8. Conclusion

Testicular Germ Cell Tumors (TGCTs), though relatively rare, remain the most common solid malignancy in
young men and pose unique diagnostic challenges. The accurate preoperative differentiation between
seminomas and Non-Seminomatous Germ Cell Tumors (NSGCTS) is critical, as management strategies and
prognoses diverge sharply between these subtypes. Conventional tools—including serum tumor markers,
ultrasound, and cross-sectional imaging—are indispensable but fall short of providing reliable histological
classification before surgery. As a result, definitive diagnosis still depends on radical inguinal orchidectomy,
which, while curative in many cases, introduces psychological, reproductive, and clinical burdens. Radiomics
and Machine Learning (ML) offer an innovative, non-invasive approach to addressing this diagnostic gap. By
extracting high-dimensional features from medical images and integrating them with predictive algorithms,
radiomics provides a “digital biopsy” of the entire tumor volume, capturing heterogeneity that eludes
conventional interpretation. Early studies employing ultrasound and MRI-based radiomics have demonstrated
encouraging performance in differentiating seminomas from NSGCTs, often exceeding the accuracy of
traditional methods. Nevertheless, the clinical translation of radiomics and ML in TGCTs faces significant
challenges. Issues of reproducibility, small dataset sizes, variability in imaging protocols, lack of external
validation, and limited integration into clinical workflows remain pressing concerns. Furthermore, ethical
considerations, interpretability of Al models, and regulatory pathways must be carefully addressed before
widespread adoption. Looking ahead, the future of this field lies in multi-institutional collaboration,
standardized imaging protocols, integration with multi-omics data, and prospective clinical trials. Advances
in explainable Al, deep learning, and decision-support tools will be essential to build clinician trust and
ensure practical utility. If these challenges are met, radiomics and ML have the potential to fundamentally
reshape the preoperative management of TGCTSs, advancing precision oncology and improving outcomes for
patients worldwide.
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